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Quantum information via novel measurements

B y Stephen M. Barnett

Department of Physics and Applied Physics, University of Strathclyde,
Glasgow G4 0NG, UK

The state projection associated with the familiar (von Neumann) measurement of
an observable does not describe the most general means of interrogating a quan-
tum system. Two problems requiring a more general description are the discrimi-
nation between non-orthogonal quantum states and the simultaneous measurement
of incompatible observables. We discuss both of these problems within the context
of measurements of optical polarization. We illustrate the technique of field mea-
surement by projection synthesis by describing a possible means for determining the
optical phase probability distribution.

1. Introduction

The emergence of quantum cryptography as a practical discipline (Phoenix &
Townsend 1995; Barnett & Phoenix 1996; Townsend et al. 1996) and the first steps
towards implementation of quantum computation (Cirac & Zoller 1995; Monroe et
al. 1995; Ekert & Josza 1996) have provided both the motivation and the means
to re-examine fundamental problems associated with quantum measurement. It has
long been appreciated that the measurement paradigm of projection into the eigen-
state of the measured observable corresponding to the experimental value found
does not describe the full range of possible interactions providing information about
a quantum system (Helstrom 1976). In this paper, we describe three problems of
measurement in quantum optics and the ways in which a more general view of mea-
surement can, at least partially, resolve them.

Our usual picture of a quantum measurement involves an observable u associated
with a property of the observed system and represented by an Hermitian operator û.
A measurement of this observable will give one of the eigenvalues of û and (ideally)
leave the system in the corresponding eigenstate (von Neumann 1955). This is the
familiar, but mysterious, collapse of the wave function. The simplest example of a
measurement of this type is the measurement of the projector |v〉〈v|, where |v〉 is
a possible state of the system. The question asked by such a measurement is ‘is
the system in the state |v〉?’, with the eigenvalues 1 and 0 corresponding to the
answers ‘yes’ and ‘no’, respectively. Measurements performed on a large ensemble of
identically prepared states will give the probability that the system is in the state
|v〉. Following the measurement, the original state |Ψ〉 becomes |v〉 if the result was
1 and (1−|v〉〈v|)|Ψ〉 (multiplied by a normalization factor) if the result was 0. Most
measurements are more destructive than this in that they do not leave the system in
an eigenstate of the measured observable. For example, photodetection provides the
means to measure the number of photons present, but in doing so it absorbs them,
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leaving the field in its vacuum state. We will, however, refer to all measurements
which provide a precise measurement of the value of an observable associated with
the system of interest alone as von Neumann measurements.

In this paper we discuss two problems for which it is helpful or even necessary to
take a more general view of what constitutes a measurement. We will find that the
task of determining in which of two non-orthogonal states a system is prepared with
the minimum probability of error can be achieved by means of a von Neumann mea-
surement (Helstrom 1976). The optimum error-free measurement, however, requires
a more general type of measurement (Ivanovic 1987; Peres 1988). It is possible to
perform a simultaneous measurement of two incompatible observables. This again is
not described by a simple von Neumann measurement but requires introduction of
observables associated with a second quantum system (Arthurs & Kelly 1965).

Even if a von Neumann measurement is required, its realization may be far from
straightforward. We can, however, find the probability distribution associated with
a given observable by synthesizing the projectors associated with its eigenvalues.
We describe the method of projection synthesis as it might be applied to measuring
the phase probability distribution of a electromagnetic field mode (Barnett & Pegg
1996).

2. Distinguishing between non-orthogonal states

The information that we gain on performing a measurement will depend, in part,
on our prior knowledge of the system. If, for example, we know that the system under
study has been prepared in one of two non-degenerate eigenstates of an Hermitian
operator, then measuring the corresponding observable will tell us in which of the
two states the system was prepared and there is no further information to be gained.
A single measurement of the correctly chosen observable has provided the missing
information with which to completely determine the state.

A more challenging situation occurs if we know that the system has been prepared
in one of two non-orthogonal states. As the states are not orthogonal they are not the
non-degenerate eigenstates of any Hermitian operator and cannot be distinguished
from each other with certainty. Let us represent the two non-orthogonal states by
the kets |a〉 and |b〉 and ask what is the best we can hope to do in distinguishing
between the two states? The answer depends on what we mean by ‘best’. We will
present two answers to the question, each associated with a different criterion for
best. In the first we require a definite answer in the form ‘the system is in state |a〉
(or |b〉)’ and ask that the probability of an error in the assignment of the state be
as small as possible. It has been shown (Helstrom 1976) that the best that can be
achieved is to arrive at an average error probability given by

Perror = 1
2{1− [1− 4ζaζb|〈a|b〉|2]1/2}, (2.1)

where ζa and ζb = 1− ζa are the a priori probabilities that the system was prepared
in the state |a〉 or |b〉, respectively. The Helstrom bound can be attained by means
of a von Neumann measurement. It is convenient to represent the states |a〉 and |b〉
as column vectors in some suitable basis

|a〉 =

(
cos θ
sin θ

)
, |b〉 =

(
cos θ
− sin θ

)
. (2.2)
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We introduce the orthogonal states |a′〉 and |b′〉 which in the same basis are

|a′〉 =

(
cosφ
sinφ

)
, |b′〉 =

(
− sinφ
cosφ

)
. (2.3)

A von Neumann measurement of a suitable observable such as |a′〉〈a′| − |b′〉〈b′|
will, depending on the outcome of the observation, project the system into state
|a′〉 or |b′〉. We associate the +1 result (corresponding to projection into |a′〉) with
the system being prepared in |a〉, while the −1 result is associated with the system
having been prepared in |b〉. The average probability of error is then

Perror = ζa|〈b′|a〉|2 + ζb|〈a′|b〉|2, (2.4)

which attains the Helstrom bound when we set tan 2φ = (tan 2θ)/(ζa − ζb).
Is it possible to distinguish between the two states without error? The answer

again is yes, but only if we accept the possibility of an inconclusive outcome. We
could, for example, make a measurement of the observable |a〉〈a|. If we find the
value zero then we know for certain that the system was prepared in the state |b〉,
but if we find the value unity then we do not know if the system was prepared in
state |a〉 or |b〉 and our measurement has been inconclusive. Measurements of this
type have been applied to the design of a quantum cryptographic protocol based
on signals made up only of the two non-orthogonal states (Bennett 1992). The best
error-free measurement will have a minimum probability for an inconclusive result
P (?) given by (Ivanovic 1987; Peres 1988)

P (?) = |〈a|b〉|. (2.5)

It follows therefore that the probability of correctly identifying the state, be it |a〉 or
|b〉, is 1− |〈a|b〉|. In order to present a strategy achieving this bound, represent our
states as column vectors in a three-dimensional state-space (Huttner et al. 1996) in
the form

|a〉 =

 cos θ
sin θ

0

 , |b〉 =

 cos θ
− sin θ

0

 . (2.6)

We introduce the following three orthonormal vectors spanning this three-dimen-
sional space:

|λ〉 =
1√
2

 tan θ
1√

1− tan2 θ

 , |µ〉 =
1√
2

 tan θ
−1√

1− tan2 θ

 ,

|ν〉 =

 −
√

1− tan2 θ

0
tan θ

 .


(2.7)

A suitable von Neumann measurement in this enlarged state space will determine
which of these three states the system is in and we associate the results λ and µ with
the conclusions that the system was prepared in |a〉 or |b〉, respectively. The result
ν gives us no information and is therefore associated with the inconclusive result.
The states |λ〉 and |µ〉 are orthogonal to the states |b〉 and |a〉, respectively, and
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Figure 1. Geometrical interpretation of the Ivanovic–Peres bound. Vectors a and b lie in the
x–y plane. Vectors λ, µ and ν are mutually orthogonal with non-zero z components and ν lies
in the x–z plane.

therefore no errors of identification will occur. The state |ν〉 has the same minimum
possible overlap with |a〉 or |b〉 consistent with the above constraints. It follows that
the probability of an inconclusive result is the same in whichever state the system is
prepared and attains the Ivanovic–Peres lower bound, P (?) = |〈ν|a〉|2 = |〈ν|b〉|2 =
|〈a|b〉|. Figure 1 illustrates a simple geometrical interpretation of this idea. The states
|a〉 and |b〉 are represented by a pair of vectors in the x–y plane. The states |λ〉, |µ〉
and |ν〉 are represented by three mutually orthogonal vectors chosen so that |λ〉 and
|µ〉 are orthogonal to |b〉 and |a〉, respectively.

Two simple optical examples of the problem arise if we attempt to distinguish
between two non-orthogonal states of linear polarization given only a single photon
and differentiating between two (non-orthogonal) coherent states of a field mode.
Both of these problems arise in the study of secure communications by quantum
cryptography (Ekert et al. 1994; Phoenix & Townsend 1995). The two linear polar-
ization states (2.2) correspond to light polarized at θ and −θ relative to a chosen axis.
A measurement achieving the Helstrom bound consists of determining whether the
polarization is oriented at φ or φ− 1

2π relative to this axis corresponding to the two
basis states (2.3). Figure 2 shows the error rate for ζa = ζb corresponding to equal
a priori probabilities for the two states so that the Helstrom bound on the average
error probability becomes 1

2 [1− sin(2θ)]. The experimental data were recorded with
highly attenuated laser pulses, each having a mean photon number of approximately
0.1 (Barnett & Riis 1997). An Ivanovic–Peres measurement of the polarization state
is a little more difficult, but an ingenious scheme to achieve this has recently been
demonstrated (Huttner et al. 1996).

The coherent states of a field mode, |α〉, are labelled by a complex number (α)
which may be thought of as the scaled complex amplitude of the corresponding
electromagnetic field. The important properties for our purposes are that the photon
number is not fixed but has the expectation value 〈n̂〉 = |α|2. The vacuum state |0〉 is
the coherent state corresponding to zero amplitude and zero photons. The coherent
states are not mutually orthogonal, so that

|〈α|α′〉|2 = exp(−|α− α′|2). (2.8)

In simple interference experiments, the complex amplitude behaves like the ampli-
tude of a classical field. (For a fuller discussion of these states see, for example,
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Figure 2. The Helstrom bound on the minimum average error probability for distinguishing
between linear polarization states separated by angle 2θ.

Loudon 1983; Barnett & Radmore 1997.) The coherent states we would like to dis-
tinguish are those associated with opposite signs of the field, that is |α〉 and | − α〉.
An error-free Ivanovic–Peres measurement may be realized using a 50%:50% sym-
metric beam splitter (Huttner et al. 1995) for which the complex transmission and
reflection coefficients are 1/

√
2 and i/

√
2, respectively (Fearn & Loudon 1987; Bar-

nett & Radmore 1997). Figure 3 depicts an experimental arrangement designed to
realize an Ivanovic–Peres measurement to distinguish between |α〉 and | − α〉. The
unknown state, |α〉 or |−α〉, is introduced through port a and made to interfere at a
beam splitter with the state |iα〉 introduced through port b. Interference transforms
the input state |α〉a ⊗ |iα〉b or | − α〉a ⊗ |iα〉b into the output state |0〉c ⊗ |i

√
2α〉d or

|√2α〉c ⊗ |0〉d, respectively. An unambiguous determination of the original state will
occur when photocounts are registered in one of the detectors; counts in detector D
or C determine the state to have been |α〉 or | − α〉, respectively. An inconclusive
result occurs when no counts are registered in either detector. The probability for
this to happen is simply the probability that the resulting coherent state has no
photons and is

P (?) = |〈i
√

2α|0〉|2 = |〈
√

2α|0〉|2 = exp(−2|α|2) = |〈α| − α〉|, (2.9)

clearly satisfying the Ivanovic–Peres bound. Realising the Helstrom bound for two
coherent states is more of a challenge, although progress in this direction has been
reported recently (Sasaki & Hirota 1996a,b; Sasaki et al. 1996).

3. Simultaneous measurement of conjugate observables

It is not possible to prepare a state in which the precise values of a pair incompat-
ible observables are known. This fundamental idea played an important role in the
development of quantum theory and is encapsulated in the uncertainty (or indeter-
minacy) principle (Heisenberg 1930; Robertson 1929). For position x and momentum
p, this restricts our uncertainty in the two observables to

∆x∆p > 1
2~. (3.1)

Measurement of two incompatible observables is restricted by a different bound so
that for any given state a joint measurement of x and p leads to statistical uncer-
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Figure 3. Schematic diagram of a 50%:50% beam splitter with input modes a and b and output
modes c and d.

tainties bounded by the inequality

∆x∆p > ~, (3.2)

so that the bound is twice that for state preparation (Arthurs & Kelly 1965; She &
Heffner 1966; Busch 1985; Stenholm 1992). In order to understand the origin of the
additional uncertainty, we recall that an unambiguous identification of the values
of two observables can only be made if their corresponding operators commute.
In order to achieve this for the position and momentum, we introduce a second
(tilde) system characterized by position x̃ and momentum p̃. The total momentum
P = p + p̃ and relative position X = x − x̃ are then compatible observables and
can be determined simultaneously. The tilde system is a quantum system in its
own right, bounded by the uncertainty relation (3.1). The origin of the increased
bound seen in (3.2) is this additional uncertainty associated with specifying the
position and momentum for the tilde system which was required in order to make
the position and momentum simultaneously observable. In order to determine the
values of the incompatible observables we have had to accept an additional statistical
error not inherent to the system under scrutiny. We are, in effect, performing an
unsharp measurement (Busch 1985). This doubling of the uncertainty is not restricted
to position and momentum observables but is a general property of simultaneous
measurements on any pair of incompatible observables (Arthurs & Goodman 1988).

A natural optical realization of a canonically conjugate pair of operators is given
by the quadratures which are the quantized field observables associated with the real
and imaginary parts of the classical complex electric field amplitude. The quadra-
tures have risen to prominence in the study of squeezed states of light (Loudon &
Knight 1987; Barnett & Radmore 1997). Measurement of a single quadrature can be
performed by balanced homodyne detection using a large amplitude coherent field
as a local oscillator (Loudon & Knight 1987). Measurement of both field quadratures
can be achieved by coherently splitting the field to be measured into two parts, using
a 50%:50% beam splitter, and then measuring a different quadrature on each of the
two resulting (reduced amplitude) beams (Walker 1987). The enhanced uncertainty
arises from the vacuum field entering the 50%:50% beam splitter through the unused
port. Experimental realizations of the joint measurement demonstrate the expected
enhanced uncertainty (Walker & Carroll 1984, 1986).

We can apply the same reasoning as that outlined above to the measurement of
other incompatible observables such as orthogonal components of spin associated
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with a spin-1
2 particle or other two-state system. The x and z components of the

spin, σx and σz, are incompatible observables. In order to analyse a joint measure-
ment of these observables, we introduce a second (tilde) two-state system with spin
components σ̃x and σ̃z. The collective observables σxσ̃x and σzσ̃z are compatible and
so can be determined simultaneously. We can choose the state of the tilde system and
therefore know the expectation values 〈σ̃x〉 and 〈σ̃z〉. The eigenvalues of σxσ̃x and
σzσ̃z are ±1 and, as we know the expectation values of the tilde observables, we can
interpret the results of the measurements of σxσ̃x and σzσ̃z as unsharp measurements
of σx and σz. Consider, for example, a joint measurement of σx and σz if the system
is prepared in the ±1 eigenstate of σz (|±〉) or of σx (1/

√
2{|+〉 ± |−〉}). We prepare

the tilde spin in a superposition of the eigenstates of σ̃z so that the combined state
of the two systems is

|Ψ〉 = |ψ〉 ⊗ {cos( 1
2θ)|+̃〉+ sin(1

2θ)|−̃〉}, (3.3)

where |ψ〉 is one of the eigenstates of σx or σz. The expectation values of σ̃x and σ̃z
in this state are

〈σ̃x〉 = sin θ, 〈σ̃z〉 = cos θ, (3.4)
which, for definiteness, we take to be positive. We then associate a measurement
of σxσ̃x giving the result ±1 as an unsharp measurement of σx with the value ±1,
respectively. Similarly, if we find the value of σzσ̃z to be ±1, then we associate ±1
with the value of σz. If the state is one of the eigenstates of σz, then this procedure
will correctly identify the state with probability 1

2(1 + cos θ). If, instead, we have
one of the eigenstates of σx, then the probability of correctly identifying the state
is 1

2(1 + sin θ). Clearly, a more accurate or less ‘unsharp’ determination of σz or σx
leads to a less accurate determination of σx or σz, respectively. In the symmetrical
arrangement, for which θ = 1

4π, the probabilities of correctly identifying the spin
components are approximately 85%.

In order to realize a measurement of both σx or σz we require an experimen-
tal arrangement with four possible outcomes corresponding to each spin component
having the possible values ±1. As an explicit example, consider the problem of a
single linearly polarized photon with either horizontal or vertical polarization (cor-
responding to an eigenstate of σz) or with polarization oriented at 45◦ to these axes
(corresponding to an eigenstate of σx). Figure 4 illustrates a possible implementa-
tion of such a measurement (Busch 1987). A single photon is either transmitted or
reflected at a 50%:50% beam splitter. The reflected beam is split at a polarizing beam
splitter, oriented so that it transmits a polarization oriented at 1

8π to the vertical
so as to be intermediate between the +1 eigenstates of σx and σz. The orthogonal
polarization is reflected so that photodetectors placed at the outputs perform a mea-
surement of {σz + σx}/√2. The beam transmitted through the first beam splitter
is also split at a polarizing beam splitter, this time oriented so as to measure the
polarization corresponding to the operator {σz − σx}/√2. For a single photon only,
one of the detectors will register a photocount and we can then associate each of the
possible outcomes with a different joint measurement of σx and σz. A photocount
registered in detector A, B, C or D is interpreted as an unsharp measurement of
σx and σz, corresponding to the values (+1,+1), (−1,−1), (−1,+1) or (+1,−1),
respectively. For a polarization prepared in an eigenstate of σx or σz, the probability
of correctly assigning the value of σx or σz is 85%. More generally, the statistics of
the measurement are the same as those based on the measurement of σxσ̃x and σzσ̃z
described above with the state (3.3) and θ = 1

4π.
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Figure 4. Representation of a possible simultaneous measurement of incompatible polarization
observables. A 50%:50% beam splitter sends the photon to one of two polarizing beam splitters
oriented so as to measure different polarization components.

We have seen that it is possible to measure incompatible polarization compo-
nents for a single photon, but only at the expense of an increased uncertainty which
manifests itself as a finite probability of error in assigning the polarization compo-
nents. For this reason, simultaneous measurements of the observables corresponding
to these polarizations will not provide a successful means of eavesdropping on a quan-
tum cryptographic communication channel. Bell’s theorem in the form it is usually
expressed involves the choice of a pair of spin observables for each of two entangled
two-state systems (Bell 1987). Under suitable conditions, the ensemble average over
many measurements leads to a violation of the inequality. If we were to measure both
of the single-particle observables appearing in the inequality simultaneously, then we
would find that Bell’s inequality is restored (Bédiat, unpublished research). This is
because the additional uncertainty associated with the joint measurement reduces
the level of correlation observed.

4. Measurement by projection synthesis

The simple von Neumann measurement described in the first section involves pro-
jection onto an eigenstate of the Hermitian operator corresponding to the observ-
able being measured. The probability associated with a given result is simply the
expectation value of the corresponding projector. If we can synthesize the projec-
tor corresponding to a given eigenstate then we can determine the corresponding
probability distribution. The projection synthesis method described in this section
provides quite a general method for measuring observables associated with an elec-
tromagnetic field mode. We will restrict our discussion to measurement of the phase
probability density by projection synthesis (Barnett & Pegg 1996; Pegg et al. 1997).

For a quantized field mode, the photon number probability distribution can be
determined by photodetection but other quantities, such as the phase probability
distribution (Barnett & Pegg 1989; Pegg & Barnett 1989) are more difficult to mea-
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sure, although this has been done (Beck et al. 1993). The probability density for pure
state |f〉 =

∑
cn|n〉 to have a phase θ is (Pegg & Barnett 1997)

P (θ) =
1

2π

∣∣∣∣ ∞∑
n=0

cn exp(−inθ)
∣∣∣∣2. (4.1)

This is proportional to a quantity that can be approximated to within any required
error by the square of the modulus of the projection of |f〉 onto the state

|θ,N〉 =
1√
N + 1

N∑
n=0

exp(inθ|n〉 (4.2)

by choosing N to be sufficiently large. That is, we can replace (4.1) for N suitably
large by

PN (θ) =
1

2πkN

∣∣∣∣ N∑
n=0

cN exp(−inθ)
∣∣∣∣2, (4.3)

where the normalization constant kN =
∑N

n=0 |cn|2 ≈ 1 is inserted to ensure that
PN (θ) is normalized over a 2π range. This normalization property allows us to find
(4.3) by measuring a quantity proportional to it and later normalizing the results
obtained for a large number of different values of θ. It is worth noting that (4.2) has
the same mathematical form, with N in place of s, as the eigenstates of the Hermitian
optical phase operator (Barnett & Pegg 1989; Pegg & Barnett 1989, 1997). Here,
however, we are not taking the infinite N limit but rather choosing N to be large
enough for (4.3) to serve as a good approximation to (4.1).

We seek an event, the amplitude for which is proportional to the projection of
|f〉 onto |θ,N〉, with a proportionality constant independent of θ. From this we can
reconstruct the phase probability distribution by normalization. Consider a 50%:50%
symmetric beam splitter with input modes a and b and output modes c and d (see
figure 3). The photon annihilation operators for these four modes are a, b, c and d.
We measure the probability that N photons are detected in mode c, while no photons
are detected in mode d. For these events, we infer that the output state is

|N〉n ⊗ |0〉d =
c†N√
N !
|0]〉c ⊗ |0〉d, (4.4)

We can then use the beam splitter relations (Fearn & Loudon 1987; Barnett &
Radmore 1997) to rewrite (4.4) as an entangled state of the input modes in the form

|M〉 =
2−N/2√
N !

N∑
l=0

(
N

l

)
a†(N−l)(−ib†)l|0〉a ⊗ |0〉b

= 2−N/2
N∑
l=0

(
N

l

)1/2

(−i)l|N − l〉a ⊗ |l〉b. (4.5)

The amplitude for the output to be |N〉c ⊗ |0〉d is just the projection of the input
state |F 〉 = |f〉a ⊗ |b〉b onto the state |M〉, where |b〉b =

∑
bn|n〉b is the input state

into mode b. The amplitude for this is simply

〈F |M〉 = 2−N/2
N∑
l=0

(−i)

(
N

l

)1/2

b∗l c
∗
N−l. (4.6)
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For the modulus of this amplitude to be proportional to the modulus of the projection
of |f〉 onto |θ,N〉, we require

b∗n ∝
(
N

n

)−1/2

exp[−in(θ − 1
2π)] (4.7)

for 0 6 n 6 N . Ideally, we require a reciprocal binomial state for which only the
first N + 1 photon numbers are non-zero (Barnett & Pegg 1996). However, if N is
not required to exceed one or two, then coherent or squeezed states may be used
(Pegg et al. 1997). If such states can be prepared (Pegg et al. 1997), then the phase
probability distribution can be found by determining the proportion of events in
which N photocounts are registered in detector C and none in detector D. The
full phase probability distribution may be found by measuring this proportion for a
sufficient range of values of θ in (4.7) and then normalizing the resulting distribution
to give (4.3).

State projection synthesis provides the means to obtain the probabilities associated
with states other than the phase states. The ability to prepare any chosen reference
state for mode b would, in principle, allow the experimental determination of the
expectation value of any chosen projector formed from the first N+1 number states.

5. Conclusions

We have presented three extensions of conventional (von Neumann) measurements
and described possible quantum optical implementations of these. It is not possible
to discriminate with certainty between two non-orthogonal states of a single system,
such as non-orthogonal polarization states of a single photon. The best we can do
is to minimize the error rate to the Helstrom bound (Helstrom 1976) or provide
error-free discrimination but with a bounded probability for an inconclusive result
(Ivanovic 1987; Peres 1988). Both of these measurement bounds have been achieved
in measurements of optical polarization (Barnett & Riis 1997; Huttner et al. 1996).

It is not possible to measure two incompatible observables, such as the position
and momentum of a particle, with unlimited accuracy. Such measurements necessar-
ily involve additional uncertainty over and above that inherent in the uncertainty
principle (Arthurs & Kelly 1965; Arthurs & Goodman 1988). A quantum optical
implementation in which values for the canonically conjugate field quadratures are
determined has been demonstrated (Walker & Carroll 1984, 1986). We have described
a rather simple arrangement by which unsharp values for different polarization com-
ponents can be determined. This is only one of a number of such possible realizations
for simultaneous measurement of polarization (Busch 1987).

It would be useful to have a general technique for measuring the probability dis-
tribution associated with any chosen field observable. One way of achieving this is to
perform enough measurements in order to reconstruct the state (Smithey et al. 1993)
and then calculate the required probability distribution from the reconstructed state.
A more direct and practical method in some cases might be to use projection synthe-
sis (Barnett & Pegg 1996). We have shown how the phase probability distribution
can be found by this method if we have access to suitable reference states.

The examples presented in this paper by no means exhaust the possibilities for
generalized measurements in quantum optics. Exotic schemes involving entanglement
between the system to be measured and an ancilla have been proposed. The rapid
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advance in ion trap techniques, aimed at developing quantum computing (Monroe
et al. 1995), offer an excellent opportunity to put some of these into practice.
The material in this paper was developed in collaboration with Nathalie Bédiat, Norbet
Lütkenhaus, Lee Phillips, David Pegg, Simon Phoenix and Erling Riis. I am grateful to them
and also to Claire Gilson, Osamu Hirota, Geoff New and Masahide Sasaki for helpful comments
and suggestions.
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